ПAMIBIA UПIVERSITY
OF SCIEПCE AПD TECHПOLOGY

Faculty of Health and Applied Sciences

Department of Mathematics and Statistics

QUALIFICATION: Bachelor of Science ; Applied Mathematics and Statistics	
QUALIFICATION CODE: O7BAMS	LEVEL: 5
COURSE: FINANCIAL MATHEMATICS 1	COURSE CODE: FIM502S
DATE: January 2019	SESSION: Theory
DURATION: 3 Hours	MARKS: 100

SECOND OPPORTUNITY EXAM QUESTION PAPER	
EXAMINER(S)	Dr Victor Katoma; Mrs Susan Mwewa
MODERATOR:	Dr Samuel Eegunjobi

THIS QUESTION PAPER CONSISTS OF 2 PAGES

(Excluding this front page)

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. Non-programmable pocket calculator without the cover

QUESTION 1 (25 MARKS)

1.1 Show that $\ddot{a}_{n}=\frac{1-v^{n}}{d}$
1.2 A loan of $N \$ 10,000$ is to be repaid over 10 years by a level annuity payable monthly in arrears. The amount of the monthly payment is calculated on the basis of an interest rate of 1\% per month effective. Find the
1.2.1 Monthly repayment.
1.2.2 Total capital repaid and interest paid in the $1^{\text {st }}$ and last year respectively.
1.2.3 After which monthly repayment the outstanding loan is first less than $\mathrm{N} \$ 5,000$.
1.2.4 For which monthly repayment the capital repaid first exceeds the interest.

QUESTION 2 (25 MARKS)

2.1 Define the nominal rates of interest
2.2 Derive the compound interest formula from simple interest
2.3 Deduce the continuous compounding formula from the compounding formula
2.4 Show that $a_{\infty]}=\lim _{n \rightarrow \infty} a_{n]}=1 / i$

QUESTION 3 (25 MARKS)

3.1 Given that $\delta=0.1$ find the values of
$i^{(4)}, i^{(12)}, i^{(365)}, d^{(4)}, d^{(12)}, d^{(365)}$
3.2 On 10 Jan in each of the years 1964 to 1979 inclusive, an investor deposited $£ 5000$ in a special bank savings account. On 10 Jan 1983, the investor withdrew his savings. Given that over the entire period the bank used an annual interest rate of 7\% for its special savings accounts, find the sum withdrawn by the investor.
3.4 Why do banks impose interest
(3)

QUESTION 4 (25 MARKS)

4.1 Given that $d=6 \%$, compute the value of $i^{(12)}$
4.2 Prove that $S_{n]}=\frac{(1+i)^{n}-1}{i}$
4.3 Define the following
4.3.1 Loan schedule
(4)
4.3.2 Effective interest rates

